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Summary: Oligodendrocytes (OLs) are particularly susceptible
to the toxicity of the acute lesion environment after spinal cord
injury (SCI). They undergo both necrosis and apoptosis acutely,
with apoptosis continuing at chronic time points. Loss of OLs
causes demyelination and impairs axon function and survival. In
parallel, a rapid and protracted OL progenitor cell proliferative
response occurs, especially at the lesion borders. Proliferating and
migrating OL progenitor cells differentiate into myelinating OLs,
which remyelinate demyelinated axons starting at 2 weeks post-
injury. The progression of OL lineage cells into mature OLs in the
adult after injury recapitulates development to some degree, owing
to the plethora of factors within the injurymilieu. Although robust,
this endogenous oligogenic response is insufficient against OL
loss and demyelination. First, in this review we analyze the major

spatial–temporal mechanisms of OL loss, replacement, and
myelination, with the purpose of highlighting potential areas of
intervention after SCI. We then discuss studies on OL protection
and replacement. Growth factors have been used both to boost the
endogenous progenitor response, and in conjunction with
progenitor transplantation to facilitate survival and OL fate.
Considerable progress has been made with embryonic stem cell-
derived cells and adult neural progenitor cells. For therapies
targeting oligogenesis to be successful, endogenous responses and
the effects of the acute and chronic lesion environment on OL
lineage cells must be understood in detail, and in relation, the
optimal therapeutic window for such strategies must also be
determined. Key Words:Myelin, polydendrocytes, excitotoxicity,
inflammation, transplant, macrophage.

INTRODUCTION

Trauma to the spinal cord results in massive tissue
destruction and cellular damage at and around the injury
site. The initial physical assault to the spinal cord causes
vascular rupture, hemorrhage and necrosis of neurons
and glia at the injury site. This is followed by “secondary
injury cascades,” including blood-brain barrier break-
down, reduced blood flow and ischemia, excitotoxicity,
free radical production, and immune cell infiltration [1].
These events result in continued loss of neurons and glia.
This review will focus on mechanisms involved in loss
of oligodendrocytes (OLs) after spinal cord injury (SCI),
spontaneous replacement of endogenous OLs, and
therapies targeted at protecting or replacing OLs.

SPINAL CORD INJURY AND
OLIGODENDROCYTE LOSS

Rodent models of SCI have been used extensively to gain
insight into the cellular pathology occurring after injury.
Research in the 1990s revealed that OLs are quite susceptible
to damage after SCI, and are lost to acute necrosis and acute/
subacute apoptosis [2–6]. In a rat spinal contusion model,
acute OL loss was detected within 15 minutes postinjury
with continual loss occurring for 4 h [2, 5]. Similarly, in a
mouse SCI model, OL numbers decreased within 24 h and
steadily declined by 3 to 7 days postinjury (dpi) [7].
Prolonged OL apoptosis has been detected for at least
3 weeks following rat spinal contusion; dying cells were
especially prominent in degenerating axon tracts rostral and
caudal to the injury site [3, 8]. Apoptotic OLs have also
been noted in tissue from nonhuman primates and human
patients revealing that this phenomenon is common across
multiple injury models and after human SCI [3, 9, 10].

Early mechanisms of OL loss
Many factors in the acute lesion environment can be toxic

to OLs. For instance, proteolytic enzymes released from
necrotic cells or damaged vessels can digest cells and
vascular structures, which potentiates damage and structural
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compromise. Blood components can induce apoptosis and
necrosis of cultured oligodendrocyte progenitor cells
(OPCs), and at low concentrations can inhibit OPC
proliferation and migration [11]. Ischemia and reperfusion
are also major contributors to free radical formation,
including reactive oxygen and nitrogen species. The result-
ing oxidative stress damages cellular membranes, proteins,
and DNA. OLs are particularly vulnerable to oxidative stress
(and excitotoxicity, see as follows) due to their high
metabolic activity, high levels of intracellular iron and low
concentration of antioxidants, such as glutathione [12].
Another secondary injury cascade implicated in OL loss

after SCI is excitotoxicity. Work by McAdoo et al. [13]
showed that glutamate was elevated rapidly after SCI, and
when comparable concentrations of glutamate were micro-
injected into intact spinal cords, OL death ensued [14]. OLs
express multiple glutamate receptor subtypes, including (2-
amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid)
(AMPA), kainate receptors, and n-methyl-d-aspartic acid
(NMDA) receptors [15]. Thus, they are vulnerable to
elevated glutamate levels. AMPA receptor activation can
also stimulate OL progenitor migration [16]. Given that
glutamate levels are likely highest in regions of greatest
pathology, this pro-migratory OPC response may either
serve to call in cell replacements for dying OLs and/or
cause further cell death by drawing them into a toxic milieu
of dying cells and lethal molecules.
Excitotoxicity is not restricted to glutamate, but also

occurs following adenosine-5'-triphosphate (ATP) binding
to P2X7 receptors on OLs [17, 18]. ATP is elevated within
2 h after SCI and is likely released by multiple cell types,
including OLs [17, 19]. Both glutamate and ATP lead to
calcium overload, which can trigger multiple intracellular
pathways leading to cell demise [19, 20]. In addition,
cytokines such as tumor necrosis factor-α and interleukin
(IL)-1β, which are up-regulated within minutes after SCI
[21, 22], can exacerbate excitotoxicity by impairing
glutamate uptake [23].
Infiltrating neutrophils and activated microglia release

products that can promote OL loss, including free
radicals, pro-inflammatory cytokines, glutamate, and
proteases (reviewed by Donnelly and Popovich [22]).
Lymphocytes reach peak levels in the rodent spinal cord
at ~1 week postinjury [24], and can lyse OLs directly
[25] and/or induce apoptosis by releasing molecules
that activate death receptors via tumor necrosis factor-
α, IL-2, and interferon gamma (IFNγ). OL death may
also occur through the death receptors Fas and p75
nerve growth factor receptor (p75NGFR) via their
respective ligands (FasL and NGF) [26–28]. In addition
to apoptosis and necrosis, autophagy has recently been
shown to occur for at least 21 days following spinal
hemisection, with Beclin-1 expression (a promoter of
autophagy) highest in OLs compared to neurons or
astrocytes [29].

Chronic OL loss after SCI
OL apoptosis has been detected at 2 to 3 weeks after

SCI and has been attributed to wallerian degeneration
of axons. The hypothesis for wallerian loss of OLs is
that axons provide trophic support for OLs; hence, the
loss of axons results in subsequent loss of the
associated OLs. In rodents, this diminution of OLs
occurs several segments away from the epicenter,
extending rostro-caudally along the degenerating axon
tracts [6, 8]. However, a recent study determined that
axon degeneration alone (in the absence of trauma) was
not sufficient to kill OLs and in fact evoked OPC
proliferation and new OL formation [30]. The authors
contrasted this response to OL apoptosis rostral to
spinal contusion in which they noted that markers of
oxidative stress were present in OLs following contusion
injury but not dorsal rhizotomy. Therefore, the lack of OL
loss with pure axon degeneration could be due to lack of
oxidative stress, or possibly from continued support of
OLs from unsevered axons.

Microglia, macrophages, and OLs
Microglia and macrophages derived from infiltrating

monocytes have both destructive and reparative proper-
ties after SCI (reviewed by Jones et al. [31]). Numerous
studies have attempted to describe interactions of micro-
glia/macrophages and OPCs/OLs. In a chemical demye-
lination model, infiltrating macrophages promote OPC
recruitment [32], perhaps through release of growth
factors or glutamate, as previously mentioned. Recent
in vitro data revealed that microglia and macrophages
isolated from contused rodent spinal cords produce
factors that inhibit the growth of OPC-containing cell
spheres isolated from the same spinal cords [33]. Work
by our group showed that activation of intraspinal
microglia using different receptor ligands results in
either OPC death or OPC proliferation and marked OL
genesis [34]. A follow-up study revealed that OPC
proliferation and OL genesis occurring in response to
intraspinal microglia activation was significantly reduced
by iron chelation, revealing that available iron is
necessary for a maximal pro-oligogenic response of
microglial activation [35]. This is in accordance with in
vitro evidence showing that the iron status of microglia
affects their functional relationship with OPCs [36]. In
addition, recent work by our group revealed that OPCs
internalize macrophage-derived ferritin both in vivo and
in vitro, suggesting ferritin may serve as a pro-oligogenic
signal between macrophages and OPCs (Schonberg and
McTigue, personal observation). It is clear that micro-
glia/macrophages have considerable potential for shap-
ing OPC responses to injury, and more research is
needed to characterize the diverse interplay between
these two cell types.
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DEMYELINATION AND REMYELINATION
AFTER SCI

Early work studying myelin damage after SCI noted
prevalent vesicular degeneration of myelin and widening of
peri-axonal spaces within hours after injury [37, 38].
Furthermore, a significant loss of major myelin proteins
following SCI has been detected in rodents and monkeys
[38–41]. Some of the earliest studies examining demyelina-
tion after SCI in cats and rodents determined that demyeli-
nationwas fairly prevalent during the first 2 weeks postinjury
[40–42]. This was confirmed in more recent work using
tissue from dogs that had sustained a spontaneous SCI [43].
In human tissue, demyelinated axons have been detected to a
variable degree along lesion borders from 1 to 22 years
postinjury [9]. Thus, demyelination, especially acutely,
appears to be a consistent finding after SCI and may
contribute to functional deficits by abrogating action
potential conduction through denuded segments.
The lack of large-scale, chronic demyelination after

SCI is due, at least in part, to spontaneous remyelination
by OLs and Schwann cells. Axon remyelination in the
adult central nervous system (CNS) was first documented
by Drs. Richard and Mary Bunge [44, 45]. Subsequent
work has consistently detected axon remyelination after
SCI, typically beginning around 2 weeks postinjury [40,
41]. Intriguingly, when axons are remyelinated by OLs,
the myelin is thinner and the internodes are shorter
compared to normal myelin [46]. Despite these character-
istics, remyelination can restore axonal conduction
velocity, as elegantly illustrated by Smith et al. [47]. As
a proof of principal, studies by the Duncan laboratory
[48] bolstered the notion that remyelination restores
function. They showed that remyelination by trans-
planted OLs in myelin-deficient animals restored con-
duction velocity to near normal. Similarly, Jeffery and
Blakemore [49] found that with the onset of remyelina-
tion, functional deficits disappeared in an ethidium
bromide demyelination model. Thus, spontaneous
remyelination after SCI likely preserves function of
spared intact axons.
The phenomenon of remyelination likely also main-

tains axon integrity. Indeed, bare axons are thought to be
vulnerable to pathological environments, and thereby
more susceptible to transection [50]. There is a symbiotic
relationship between axons and OLs that exceeds simple
electrical insulation. Indeed, recent data shows that the
absence of functional peroxisomes in OLs results in
widespread axon damage and demyelination [51], indi-
cating that the relationship between axons and OLs is
complex and that OLs play much more than a passive
insulating role. Persistent demyelination after SCI will
likely exacerbate axonal loss [52], making OLs indis-
pensable not only for the proper functioning of axons but
also for their survival.

REPLACEMENT OF OLS BY ENDOGENOUS
PROGENITORS AFTER SCI

Although remyelination after SCI has been acknowl-
edged for many years, identifying the cells responsible
for remyelinating axons was not clear-cut. However,
work by Blakemore and Keirstead [53] revealed that
mature OLs, which are post-mitotic, do not contribute to
remyelination; instead, remyelination is mediated by
endogenous proliferating progenitor cells. These OL
progenitors cells (commonly called OPCs or polyden-
drocytes) are present throughout the adult gray and white
matter, and respond to demyelination by proliferating and
migrating into the demyelinated zone [53–56]. Adult
OPCs, typically identified by Nerve/glial antigen 2
(NG2) or Platelet derived growth factor receptor
(PDGFRα) expression, are thought to be a heterogeneous
cell population, only some of which function as OPCs
(for review, see Nishiyama et al. [57] and Trotter et al.
[58]).
Work from our group revealed that NG2 cells proliferate

for at least 4 weeks after SCI [59]. Several other groups
have corroborated this robust proliferative response in
rodents and primates [7, 60–65]. Interestingly, accumula-
tion of mitotic NG2 cells is greatest along SCI lesion
borders [66], which may be due to differential up-regulation
of growth factors in this region [67]. Recent work by Sellers
et al. [68] demonstrated differential cell fate of NG2 cells
after SCI; NG2 cells generated 24 h after injury gave rise to
astrocytes, whereas those generated 1 week postinjury
produced OLs. However, more recent data using lineage
tracing following SCI call the ability of OPCs to give rise to
astrocytes after SCI into question [69]. Direct evidence that
NG2 cells contribute to replacement of mature OLs after
SCI was recently provided using the CNP-EGFP (2',3'-
Cyclic-nucleotide 3'-phosphodiesterase gene-enhanced
green fluorescent protein) mouse to definitively show that
EGFP+NG2+ cells differentiate into OLs after SCI [70].
Thus, at least a portion of NG2 cells function as OL
progenitors after SCI.

MAKING OF THE OLIGODENDROCYTES

After SCI, there is recapitulation of developmental
factors integral to OL specification, migration, and differ-
entiation. Two major factors regulating OL specification
during development are the Sonic hedgehog and protein
bone morphogenetic factor (BMP) (for review, see Nicolay
et al. [71]). Sonic hedgehog, which is pro-oligogenic, is up-
regulated acutely in neurons and OLs after injury, and
remains high for several weeks [72]. A rise in BMP and its
cognate receptor was observed for 2 weeks after injury [72–
74]. BMP can drive stem/progenitor cells toward an
astrocyte rather than OL fate [75].
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Also, post-SCI treatment with a BMP antagonist
favored differentiation of OPCs into OLs, suggesting
that endogenous OL genesis may be hampered by up-
regulated BMP [68, 76].

Survival and proliferation of OPCs
Developmentally, OPC survival and proliferation

depend on many of the same growth factors and
cytokines altered by CNS injury. For instance, platelet-
derived growth factor-A (PDGF-A) is a potent mitogen
that is essential for proper OL development [77, 78].
Animals lacking PDGF-A have severely reduced OL
numbers, and mice over-expressing PDGF-A form a
surplus of OLs [79–81]. Expression of PDGF-A after
SCI has not been the specific focus of studies to date, but
at least one microarray study determined that PDGF-A is
decreased after SCI [82]. PDGF-A can also synergize
with fibroblast growth factor-2 (FGF-2) and maintain
OPCs in a continual mitotic renewal state [83–86].
Although PDGF levels after SCI are not definitively
known, FGF-2 (an OPC mitogen on its own) is up-
regulated for at least 28 days, corresponding to the time
of active OPC proliferation [67, 87–90].
Another important factor in promoting OPC prolifer-

ation and OL survival is insulin-like growth factor (IGF)
[91, 92]. IGF may play a role in oligogenesis after SCI as
increased astrocytic production of IGF-1 was noted in a
cryogenic SCI model [93]. Importantly, IGF can amplify
the action of FGF-2 and PDGF on OPCs [94], suggesting
it may increase the effectiveness of these factors if/when
present after SCI. Ciliary neurotrophic factor (CNTF), a
pleiotropic cytokine, is also important for OPC survival
and proliferation [95, 96]. CNTF and its receptor are up-
regulated early after SCI, and our laboratory detected a
robust increase chronically in CNTF and its downstream
signaling molecules along SCI lesion borders, which
corresponds regionally and temporally to elevated OPC
proliferation and maturation [67, 89, 97]. CNTF can also
increase FGF-2 and receptors for FGF and IGF, thereby
increasing the sensitivity of OL lineage cells to these
factors [98, 99]. The pronounced oligogenesis after
injury in the astrocytic glial scar region, and the ability
of astrocytes to secrete PDGF, FGF-2, IGF, and CNTF
reveal astrocytes likely sit center stage in terms of
influencing post-SCI OL production.
Neurotrophins are another important class of mole-

cules that have multiple effects on spinal cord paren-
chyma in general and OLs in particular. Neurotrophin
(NT-3) promotes OPC survival and proliferation by
activating the Mitogen-activated protein kinases (MAPK)
signaling cascade [96, 100, 101]. After SCI, increased
levels of NT-3 and brain-derived neurotrophic factor
(BDNF) have been detected in rats and primates [102–
104]. Interestingly, transplantation of fibroblasts over-
expressing NT-3 or BDNF significantly increased the

number of new OLs and myelinated axons after SCI,
suggesting that these signaling pathways can be
enhanced [105].
Chemokines, best known as chemotactic molecules for

inflammatory cells, also affect OL lineage cells. The
chemokine CXCL1 influences OPC proliferation and
migration developmentally [119] and is up-regulated
acutely after SCI [106]. CXCL12 (also known as SDF-
1α) was very recently shown to promote OPC differ-
entiation and remyelination; furthermore, the same study
showed that NG2+ progenitors express CXCR4, the
relevant receptor [107]. Previous work by Dziembowska
et al. [108], published in 2005, showed that the chemo-
kine receptor CXCR4 is important in OPC survival and
migration [109]. Expression of CXCL12 and its receptor
CXCR4 are increased after SCI, suggesting that CXCL12
may contribute to postinjury oligogenesis [110].
Although a number of other chemokines are present
after SCI, their role in OL genesis has not been
investigated.

To be or not to be: OPCs to OLs
The lineage progression from precursor cell to a

myelinating OL requires the timely exit from the cell
cycle and transcriptional initiation of differentiation and
myelin genes. A number of growth factors, cytokines,
cell cycle proteins, and transcriptional factors play a role
in this process and their expression after SCI coincides
with endogenous oligogenesis.
IL-1β, a chemokine secreted by astrocytes and micro-

glia (and to some extent by OLs), is up-regulated within
45 minutes after SCI, peaks at 12 h, and returns to basal
levels by 48 h [21]. IL-1β promotes OPC and OL
survival, and also induces OPC differentiation by
counteracting the proliferative actions of PDGF [111].
Leukemia inhibitory factor (LIF) belongs to the IL-6
family of cytokines and in vitro studies suggest that LIF
enhances OPC differentiation [112]. Receptor-mediated
LIF transport across spinal cord blood vessels has been
detected during the first week postinjury [113]; therefore,
endogenous systemic LIF may contribute to OPC differ-
entiation after SCI. Another well-described cytokine is
transforming growth factor (TGF)β1, which is signifi-
cantly increased, along with its receptors, after SCI in
rodents and humans [114–116]. TGFβ1 may have
divergent effects on OPCs. Studies have shown it can
inhibit OPC proliferation and promote differentiation into
mature OLs [117, 118]. However, a recent study revealed
that TGFβ1 stimulates Jagged1 expression by astrocytes,
which inhibits OPC differentiation [119]. Thus, the role
of TGFβ1 on OL genesis after SCI is likely complex.
Many transcription factors also regulate OPC differ-

entiation, some of which belong to the nuclear receptor
super family. One such factor, thyroid hormone receptor
is recognized as a potent regulator of OPC differ-
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entiation, and decreased levels of thyroid hormone have
been detected in SCI individuals [120]. Single or double
knockouts of thyroid hormone receptor display normal
OPC development but severe dysmyelination due to lack
of OPC maturation [121]. Other nuclear receptors that
regulate OPC differentiation are peroxisome proliferator
activated receptor (PPAR)-δ and retinoic acid receptor
[122–124]. Our laboratory has reported a temporal
increase of PPAR-δ after SCI, first in NG2 cells,
followed by expression in new OLs 1 to 4 weeks
postinjury [125]. Thus, PPAR-δ displays the correct
spatial-temporal distribution to contribute to postinjury
OPC differentiation. Retinoic acid is thought to inhibit
OL differentiation during development and thereby allow
dispersal of OPCs throughout the tissue [124]. After SCI,
a subpopulation of NG2 cells produce retinoic acid
[126], which as previously stated may reduce differ-
entiation of progenitors into mature OLs. Thus, many
endogenous factors with the potential to regulate differ-
entiation of progenitors are present after injury; manip-
ulating these molecules may be an effective strategy to
boost endogenous oligogenesis and improve myelination.

Turning on myelination
Axon-derived signals are known to regulate myelina-

tion. During development, OPCs express the notch
receptor and axons express the notch ligand Jagged-1.
As axons down-regulate Jagged-1, notch signaling is
attenuated in OPCs, which allows them to differentiate
into mature OLs that eventually myelinate the axon
[127]. Reactivation of notch signaling has been reported
after SCI, which could potentially hinder remyelination
[128]. Another axon signal is polysialylated form of the
neural cell adhesion molecule (PSA-NCAM), which can
prevent OL myelination and is thought to contribute to
demyelination in multiple sclerosis [129–131]. PSA-
NCAM is increased after SCI and is expressed by
reactive astrocytes [132], and thereby may prevent
myelination of axons in or around the glial scar.
Leucine rich repeat and Ig domain containing 1

(LINGO-1) is an Nogo-66 Receptor (NgR) co-receptor
expressed on the surface of OLs, and is an important
negative regulator of myelination [133, 134]. Admin-
istration of a LINGO antagonist after SCI promoted both
neuron and OL survival and improved functional
recovery [135]. These results suggest that LINGO is
present and functional after SCI, and may thereby reduce
spontaneous remyelination.

Epigenetic and post-translational regulation
Histone deacetylases (HDACs) are proteins involved

in chromatin remodeling by removal of acetyl groups
from histones. HDAC activity, especially that of HDACs
1, 2, and 11, is necessary for OPC differentiation into
mature OLs by promoting myelin gene expression and

repressing inhibitors of OPC differentiation [136, 137].
Pharmacological blockage of HDAC activity in demyeli-
nating lesions resulted in inefficient remyelination,
revealing that baseline HDAC activity is needed for
myelin repair in the adult CNS [138]. To date, HDAC
expression after SCI has not been investigated, except in
a preliminary report [139]. Thus, we recently examined if
HDAC messenger RNA (mRNA) levels are altered by
spinal contusion in rats. We observed that HDAC1 levels
were unaltered but HDAC2 mRNA dropped precipi-
tously by day 3 after SCI (FIG. 1a, b). HDAC3 showed a
progressive decline, which was significant at 7 to 14 dpi
(FIG. 1c). HDAC-11 displayed a complex post-SCI
pattern, in that it decreased at 3 dpi, but rose significantly
at 14 dpi. The early loss of HDACs 2 and 11 postinjury
may lead to increased transcription of OL differentiation
inhibitors.
A relatively nascent field is post-transcriptional regu-

lation of proteins in OLs by micro RNAs (miRNAs).
miRNAs are small noncoding RNAs that typically block
translation of target mRNAs. In the previous 2 years,
studies have shown that the expression of many miRNAs
is dynamically altered as OPCs differentiate into mature
OLs [140, 141]. Three studies used OL-specific pro-
moters to knockout Dicer, a protein necessary for
miRNA production, which essentially eliminates miR-
NAs from OL and OPCs [141–143]. The results revealed
either a developmental disruption in gliogenesis [143] or
that progenitor cells were formed but were unable to
differentiate [141, 142]. Furthermore, the studies
revealed that miRNAs decrease expression of proteins
needed to maintain cells in a proliferative state. For
instance, miR-219 prevents translation of PDFGRα,
Sox6, FoxJ3, Hes5, and ZFP238, all of which play a
role in OPC proliferation or inhibition of differentiation
[141, 142]. Importantly, what we believe to be the first
article to examine miRNA expression after SCI demon-
strated that expression of ~100 miRNAs are significantly
altered by SCI [144]. Interestingly, several miRNA
expressed by OLs during the differentiation process are
significantly down-regulated during the first week post-
injury [10, 141, 142, 144, 145], which could hamper
differentiation acutely after SCI. Because this is precisely
the time of maximal OPC proliferation [59], lack of these
miRNAs may decrease the ability to leverage the large
population of newly generated progenitors to fully
differentiate into myelinating OLs and replace those lost
to injury.
Thus, a great variety of factors (not all of which are

described here) involved in OL formation, survival, and
myelination are present after SCI and likely positively or
negatively influence oligogenesis in the injured cord
(FIG. 2). To understand the mechanisms integral to
endogenous myelination and to maximize repair by
endogenous or transplanted cells, much more work is
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needed to clarify the environment in which these cells
will be functioning.

SAFEGUARDING OLIGODENDROCYTES

Although spontaneous OL genesis and remyelination
occur after SCI, it is clear that decreasing OL death
would prevent early demyelination and may reduce axon
degeneration and improve axon function. Thus, numer-
ous therapeutic strategies have been tested to increase
post-SCI OL survival. Several studies have shown that
the anti-inflammatory agent minocycline promotes white
matter sparing and OL protection after SCI, in part by
inhibiting microglial production of pro-NGF [146–148].
Lee et al. [149] showed that methylprednisolone, a
common treatment after SCI, protected OLs, but not
neurons by blocking apoptosis. Methylprednisolone-
mediated effects on OL protection in SCI patients have
not yet been explored. Whitaker et al. [150] showed
rolipram, an inhibitor of the cAMP-dependent phospho-
diesterase 4 (PDE4), protects OLs from secondary injury
cascades at 24 to 72 h after injury. In a follow-up study,
rolipram was reported to increase axon conduction due to

remyelination, which was associated with improved
behavioral outcomes [151].
Treatment with growth factors has also been attempted

after SCI. For instance, administration of LIF, a cytokine
implicated in OL survival, after SCI resulted in increased
viability of OLs and decreased demyelination [152].
Exogenous BDNF treatment starting immediately or
3 days after injury decreased the number of apoptotic
OLs [153]. Another group similarly demonstrated retro-
grade transport of BDNF via intramuscular injections in
rats suppressed OL apoptosis after SCI [154]. Combining
growth factor treatment and genetic manipulation of
endogenous progenitors has also been attempted in
rodent SCI [155]. The results showed that over-expres-
sion of MASH1/achaete-scute homolog 1 in conjunction
with FGF-2 and EGF administration increased endoge-
nous formation of OLs. Thus, several therapies targeting
OL protection show promise in rodent SCI models.

NEW OLS WITH TRANSPLANTATION

Chronic persistence of demyelinated axons in the
injured spinal cord of rodents [156] and humans [9]

FIG. 1. Intraspinal histone deacetylase (HDAC) messenger RNA (mRNA) expression is altered after moderate spinal cord injury (SCI) in
rats. A temporal gene expression profile using real-time polymerase chain reaction (PCR) was conducted for HDAC 1, 2, 3, and 11 after
spinal contusion injury at T8 in rats. HDAC1 was not altered after SCI; HDAC-2 and 3 were significantly down-regulated by 1 week
postinjury and remained low at 14 dpi (a–c). HDAC-11 mRNA levels decreased at 3 dpi then returned to naïve levels by 14 dpi (d).
*p<0.05 vs naïve; **p<0.01 vs naïve; ^^p<0.01 vs 3 dpi, , #p<0.05 vs 28 dpi.
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serves as a potential therapeutic target. In addition to
preservation of OLs and boosting endogenous oligo-
genesis, recent strategies have used transplantation of
pluripotent/glial restricted cells to improve remyelination
after SCI. Although a variety of transplant studies have
been conducted with distinct sources and cell types in
SCI models, we will highlight a few relevant studies here
that focus on CNS stem-cell based transplants (for
excellent reviews, see Enzmann et al. [157], Coutts et
al. [158], and Kulbatski et al. [159]). Early work by
Utzschneider et al. [48] served as proof of principal that
transplantation of OLs in myelin-deficient animals would
lead to remyelination and axon potential conduction
velocity to near normal values. One of the first experi-
ments to test transplantation from a therapeutic stand-
point was conducted in an ethidium bromide-
demyelinating lesion in which postnatally derived OPCs
remyelinated spinal cord lesions [160]. Subsequent
studies showed that OPC transplant-derived remyelina-

tion resulted in reversal of functional deficits after
demyelination [161]. Lee et al. [162] conducted a
systematic analysis of transplantation of OPCs at 1 week
postinjury in a rat spinal contusion model. They showed
that OPCs migrated around the injury site and differ-
entiated into mature OLs (not astrocytes or neurons). The
transplants also improved functional recovery and
increased the number of retrograde-labeled neurons in
the brainstem.
An undifferentiated and pliable source of cell trans-

plants is embryonic stem cells (ESC). McDonald et al.
[163] tested the efficacy of transplanting neurally differ-
entiated cells derived from mouse ESC into an injured rat
spinal cord at 9 dpi. The cells survived, migrated, and
differentiated into neurons, astrocytes, and OLs, resulting
in significantly improved locomotor recovery [163]. In
contrast, when undifferentiated rat neural stem cells were
engrafted into injured cords, the majority of cells took on
an astrocytic fate or remained as nestin positive cells

FIG. 2. Schematic of events involved in oligogenesis after injury to the spinal cord. This schematic represents that the normal spinal cord
has axons myelinated by the oligodendrocytes (OL); however, after spinal cord injury (SCI), a series of events ensues that contribute to
OL loss (see black) and formation. There is dramatic loss of OLs due to necrotic and apoptotic cell death resulting in axonal demyeli-
nation. Acute OL protective strategies (blue) after injury may help salvage OLs and prevent further loss. Oligodendrocyte progenitor cells
(OPC) present in the spinal cord react to injury with extensive proliferation in the presence of numerous growth factors and cytokines.
Once the OPCs proliferate, environmental and axonal cues regulate OPC migration to denuded axons. After reaching their destination,
OPCs differentiate into mature OLs due to axonal signals and/or environmental factors, resulting in remyelination of the axons. Suppl-
ementing with stimulatory (green) and inhibitory (red) factors involved in each of the steps can further enhance endogenous OL formation.
A common approach to increase OL numbers is subacute cell transplantation (blue), which is another therapeutic intervention that
bolsters remyelination of axons after SCI. FGF-2 = fibroblast growth factor-2; IGF = insulin-like growth factor; PDGF-A = platelet-derived
growth factor-A; CNTF = ciliary neurotrophic factor; LINGO = leucine rich repeat and Ig domain containing; PSA-NCAM = polysialylated
form of the neural cell adhesion molecule; NOGO = neurite outgrowth inhibitor; SEMA3F = Semaphorin-3F.
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[164]. This discrepancy was attributed to species-specific
differences in cell sources (rat vs mouse). The authors
also suggested a prior need to differentiate the cells in
vitro into restricted lineages before transplantation. The
same group demonstrated that transplantation of embry-
onic glial restricted precursor cells over-expressing
BDNF and NT-3 at 9 days after injury resulted in
increased OL formation (15–30%), enhanced remyelina-
tion, and restored electrophysiological conduction result-
ing in improved locomotor function [165].
The importance of human ESC as a potential ther-

apeutic strategy has been underscored and has been
tested in multiple studies. When transplanted, these cells
survived, differentiated into OLs, remyelinated axons,
and mediated locomotor improvements in injured Severe
Combined Immunodeficiency (SCID) mice [166].
Keirstead et al. [167] differentiated human ESCs into a
pure population of OPCs in vitro and transplanted the cells
at 1 week or 10 months after SCI in rats. The grafted OPCs
survived, integrated, migrated, and differentiated into OLs
at both time points after injury. However, OLs formed by
acute transplants enhanced remyelination and improved
behavioral scores, whereas the chronic transplants failed to
do so. Thus, the window of opportunity for stem cell
transplantation clearly closes at some point.
As the use of ESCs raises a number of ethical issues,

newer studies are geared toward using adult cells,
especially because patients could undergo autologous
transplants. The combinatorial action of transplanting
adult neural precursor cells 2 weeks after SCI in
conjunction with minocycline treatment and a cocktail
of growth factors showed robust differentiation of trans-
plant cells into myelinating OLs that remyelinated axons
and improved recovery on a battery of behavioral
measures [168]. When transplants were performed at a
more chronic time (8 weeks), again beneficial effects
were not observed [167]. Other promising anatomical
and behavioral results were seen when adult neural
precursor cells were transplanted at 2 weeks, but not
8 weeks, postinjury in combination with immunosup-
pression and minocycline; ~50% of the cells differ-
entiated into OL lineage cells and ensheathed spinal
axons [168]. The reason for the limited window of
opportunity for success in remyelinating cell transplants
has been suggested to be the presence of astrocytic
processes surrounding the demyelinated axons, which
prevent the transplanted cells from reaching and remyeli-
nating the axons [167]. Thus, performing transplants
prior to the establishment of astrogliosis, or devising a
way in which transplanted cells can intermingle between
the astrocyte processes and axons, may be required for
this strategy to work.
More recent data from the same group show exciting

results when NPC transplants were combined with growth
factor and chondroitinase treatment; the results revealed not

only enhanced OL formation by transplant cells, but also
increased growth of descending axons [169]. Another
recent study transplanted OPCs engineered to over-express
CNTF, which increased transplant survival, integration, and
differentiation into OLs [170]. The grafted cells remyeli-
nated spinal axons, improved electrophysiological conduc-
tion and enhanced hind limb recovery in rats. A potential
negative effect of stem cell transplantation was demon-
strated by Hofstetter et al. [171], who noted that although
adult neural stem cell transplants improved motor function
after SCI, recovery was accompanied by allodynia due to
graft-mediated axonal sprouting. Thus, caution should be
used in transplant studies, as is true with any therapeutic
manipulation.
The multiple studies showing efficacy of stem cell

transplants culminated in the United Stated Food and
Drug Administration approval of phase I clinical trials by
Geron Corporation in which OPCs derived from human
embryonic stem cells will be transplanted acutely (within
14 days) in 8 to 10 patients with complete American
Spinal Injury Association (ASIA) A injuries. The first
patient was enrolled in October 2010. This clinical trial
represents an exciting advancement in SCI treatment in
general and highlights the importance of the need for
continued research centered on promoting endogenous
repair responses, as well as providing therapeutic options
to reduce cell death and increase cell replacement after
SCI. Only with ongoing basic and clinical research can
the devastating effects of spinal trauma become a thing
of the past.
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